Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 14(8): e1007174, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30071107

RESUMO

In the current study, we used a mouse model and human blood samples to determine the effects of chronic alcohol consumption on immune responses during Mycobacterium tuberculosis (Mtb) infection. Alcohol increased the mortality of young mice but not old mice with Mtb infection. CD11b+Ly6G+ cells are the major source of IFN-α in the lungs of Mtb-infected alcohol-fed young mice, and IFN-α enhances macrophage necroptosis in the lungs. Treatment with an anti-IFNAR-1 antibody enhanced the survival of Mtb-infected alcohol-fed young mice. In response to Mtb, peripheral blood mononuclear cells (PBMCs) from alcoholic young healthy individuals with latent tuberculosis infection (LTBI) produced significantly higher amounts of IFN-α than those from non-alcoholic young healthy LTBI+ individuals and alcoholic and non-alcoholic old healthy LTBI+ individuals. Our study demonstrates that alcohol enhances IFN-α production by CD11b+Ly6G+ cells in the lungs of young Mtb-infected mice, which leads to macrophage necroptosis and increased mortality. Our findings also suggest that young alcoholic LTBI+ individuals have a higher risk of developing active TB infection.


Assuntos
Consumo de Bebidas Alcoólicas/imunologia , Interferon-alfa/biossíntese , Interferon-alfa/efeitos dos fármacos , Tuberculose/imunologia , Adulto , Animais , Suscetibilidade a Doenças/imunologia , Feminino , Humanos , Interferon-alfa/imunologia , Tuberculose Latente/imunologia , Masculino , Camundongos , Mycobacterium tuberculosis
2.
J Infect Dis ; 217(8): 1323-1333, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29390153

RESUMO

Background: In the current study, we determined the effects of interleukin (IL)-21 on human natural killer (NK) cells and monocyte responses during Mycobacterium tuberculosis (Mtb) infection. Methods: We found that Mtb stimulated CD4+ and NK T cells from healthy individuals with latent tuberculosis infection (LTBI+) are major sources of IL-21. CD4+ cells from tuberculosis patients secreted less IL-21 than did CD4+ cells from healthy LTBI+ individuals. Interleukin-21 had no direct effect on Mtb-stimulated monocytes. Results: Interleukin-21-activated NK cells produced interferon (IFN)-γ, perforin, granzyme B, and granulysin; lysed Mtb-infected monocytes; and reduced Mtb growth. Interleukin-21-activated NK cells also enhanced IL-1ß, IL-18, and CCL4/macrophage-inflammatory protein (MIP)-1ß production and reduced IL-10 production by Mtb-stimulated monocytes. Recombinant IL-21 (1) inhibited Mtb growth, (2) enhanced IFN-γ, IL-1ß, IL-18, and MIP-1ß, and (3) reduced IL-10 expression in the lungs of Mtb-infected Rag2 knockout mice. Conclusions: These findings suggest that activated T cells enhance NK cell responses to lyse Mtb-infected human monocytes and restrict Mtb growth in monocytes through IL-21 production. Interleukin-21-activated NK cells also enhance the immune response by augmenting IL-1ß, IL-18, and MIP-1ß production and reducing IL-10 production by monocytes in response to an intracellular pathogen.


Assuntos
Interleucinas/metabolismo , Células Matadoras Naturais/fisiologia , Tuberculose Pulmonar/microbiologia , Animais , Linfócitos T CD4-Positivos/fisiologia , Citocinas/genética , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Tuberculose Latente/imunologia , Tuberculose Latente/microbiologia , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos , Mycobacterium tuberculosis , Tuberculose Pulmonar/imunologia
3.
Eur J Immunol ; 44(7): 2013-24, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24643836

RESUMO

We studied the factors that regulate IL-23 receptor expression and IL-17 production in human tuberculosis infection. Mycobacterium tuberculosis (M. tb)-stimulated CD4(+) T cells from tuberculosis patients secreted less IL-17 than did CD4(+) T cells from healthy tuberculin reactors (PPD(+) ). M. tb-cultured monocytes from tuberculosis patients and PPD(+) donors expressed equal amounts of IL-23p19 mRNA and protein, suggesting that reduced IL-23 production is not responsible for decreased IL-17 production by tuberculosis patients. Freshly isolated and M. tb-stimulated CD4(+) T cells from tuberculosis patients had reduced IL-23 receptor and phosphorylated STAT3 (pSTAT3) expression, compared with cells from PPD(+) donors. STAT3 siRNA reduced IL-23 receptor expression and IL-17 production by CD4(+) T cells from PPD(+) donors. Tuberculosis patients had increased numbers of PD-1(+) T cells compared with healthy PPD(+) individuals. Anti-PD-1 antibody enhanced pSTAT3 and IL-23R expression and IL-17 production by M. tb-cultured CD4(+) T cells of tuberculosis patients. Anti-tuberculosis therapy decreased PD-1 expression, increased IL-17 and IFN-γ production and pSTAT3 and IL-23R expression. These findings demonstrate that increased PD-1 expression and decreased pSTAT3 expression reduce IL-23 receptor expression and IL-17 production by CD4(+) T cells of tuberculosis patients.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Interleucina-17/biossíntese , Receptor de Morte Celular Programada 1/fisiologia , Receptores de Interleucina/genética , Fator de Transcrição STAT3/fisiologia , Tuberculose/imunologia , Células Cultivadas , Humanos , Interleucina-23/biossíntese , Fosforilação , RNA Mensageiro/análise , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...